N2130L

1976 Beech 58TC Baron

Performance Data

Aircraft S/N: TK-25

Prepared by the worldwide aviation specialists at RidgeAire, Inc.

SECTION V PERFORMANCE

TABLE OF CONTENTS

SUBJECT						F	AGE
Introduction to Performance a	nd						
Flight Planning							. 5-3
Airspeed Calibration Normal S	ystem						5-14
Airspeed Calibration Normal							
System - Take-Off Ground	Roll						5-15
Airspeed Calibration Alternate		m					5-16
Altimeter Correction Normal S	-						5-17
Altimeter Correction Alternate	Syste	m					5-18
Indicated Outside Air Tempera	iture (Corre	ecti	on			5-19
Fahrenheit to Celsius Tempera							
Conversion							5-20
ISA Conversion							5-21
Recommended Manifold Pressu	ıre						5-22
Take-Off Weight							5-23
Stall Speeds - Power Idle .							5-24
Wind Components							5-25
Take-Off Distance							5-26
Take-Off Distance - Grass Surfa	ace						5-27
Accelerate - Stop							5-28
Accelerate - Go							5-29
Climb - Two-Engines							5-30
Take-Off Climb Gradient - One	:						
Engine Inoperative							5-31
Time, Fuel, and Distance to Cli					•		5-32
Climb - One-Engine Inoperative							5-33
Service Ceiling - One-Engine Ir							5-34
Climb - Balked Landing	•	•	•	•		•	5-35

TABLE OF CONTENTS (Continued)

SUBJECT					 PAGE
Maximum Cruise Power -					
33 in. Hg, 2400 RPM .					5-36
Recommended Cruise Power -					
30 in. Hg, 2400 RPM .					5-37
Recommended Cruise Power -					
30 in. Hg, 2200 RPM .					5-38
Recommended Cruise Power -					
26 in. Hg, 2200 RPM .					5-39
Economy Cruise Power -					
24 in. Hg, 2200 RPM .					5-40
Range Profile - 190 Gallons					5-41
Range Profile - 166 Gallons					5-42
Range Profile - 100 Gallons					5-43
Endurance Profile - 190 Gallons					5-44
Endurance Profile - 166 Gallons					5-45
Endurance Profile - 100 Gallons					5-46
Holding Time					5-47
Descent					5-48
Landing Distance - Flaps 30°					5-49
Landing Distance - Flaps 0°					5-50
Landing Distance - Flaps 30° Gra					5-51
Landing Distance - Flans 0° Gras	s Si	ırfa	Ce		5-52

Section V Performance

INTRODUCTION TO PERFORMANCE AND FLIGHT PLANNING

All airspeeds quoted in this section are indicated airspeeds (IAS) except as noted and assume zero instrument error.

The graphs and tables in this section present performance information for takeoff, climb, landing and flight planning at various parameters of weight, power, altitude, and temperature. All FAA approved performance information is included in this section. Examples are presented on all performance graphs. In addition, the calculations for flight time, block speed, and fuel required are presented using the conditions listed.

Performance at a take-off weight of 5995 lbs (Baron 58TCA) will be equal to or better than that of the higher weight Baron 58TC.

CONDITIONS

At Billings:

Outside Air Tempera	tur	е		. 25°C (77°F)
Field Elevation .				3606 feet
Altimeter Setting				. 29.56 in. Hg
Wind				360° at 10 knots
Runway 34 Length				5585 feet

Route of Trip:

BIL-V19-CZI-V247-DGW-V19E-CYS-V19-DEN

Weather conditions IFR for cruise altitude of 17,000 feet

ROUTE SEGMENT	DIST NM	MEA FEET	WIND 17,000 FEET DIR/KTS	OAT 17,000 FEET °C	OAT AT MEA °C	ALT SET IN.HG
BIL-SHR	88	8000	010/30	-10	0	29.56
SHR-CZI	57	9000	350/40	-10	-4	29.60
CZI-DGW	95	8000	040/45	-10	0	29.60
DGW-CYS	47	8000	040/45	-10	0	29.60
	46	8000	040/45	-10	0	29.60
CYS-DEN	81	8000	040/45	-10	0	29.60

REFERENCE: Enroute Low Altitude Charts L-8 and L-9

At Denver:

To determine pressure altitude at origin and destination airports, add 100 feet to field elevation for each .1 in. Hg below 29.92, and subtract 100 feet from field elevation for each .1 in. Hg above 29.92.

Pressure Altitude at BIL:

29.92 - 29.56 = .36 in. Hg

The pressure altitude at BIL is 360 feet above the field elevation.

3606 + 360 = 3966 feet

Section V Performance

Pressure Altitude at DEN:

$$29.92 - 29.60 = .32 \text{ in. Hg}$$

The pressure altitude at DEN is 320 feet above the field elevation.

5330 + 320 = 5650 feet

For enroute altitudes and MEA's this pressure correction has been ignored.

Maximum Allowable Take-off Weight = 6100 lbs

Ramp Weight = 6100 + 32 = 6132 lbs

NOTE

Fuel for start and taxi is normally 32 pounds.

Enter the Take-Off Weight graph at 3966 feet pressure altitude and 25°C.

The take-off weight to achieve a positive rate-of-climb at lift-off for one engine inoperative is:

Take-off Weight = 4975 pounds

Enter the Take-Off Distance graph at 25°C, 3966 feet pressure altitude, 6100 pounds, and 9.5 knots headwind component.

Ground Roll	1970 feet
Total Distance over 50 ft Obstacle	3020 feet
Lift-off Speed	81 knots
50 Foot Speed	96 knots

Section V Performance

BEECHCRAFT Baron 58TC

Enter the Accelerate-Stop graph at 25°C, 3966 feet pressure altitude, 6100 pounds, and 9.5 knots headwind component:

Accelerate-Stop Distance	3670 feet
Engine Failure Speed	81 knots

NOTE

Since 3670 feet is less than the available field length (5585 ft), the accelerate-stop procedure can be performed at any weight.

Takeoff at 6100 lbs can be accomplished. However, if an engine failure occurs prior to retraction of landing gear, the accelerate-stop procedure must be performed (even if airborne, unless sufficient altitude is available for retraction of landing gear while descending).

The following example assumes the airplane is loaded so that the take-off weight is 4975 pounds.

Although not required by regulations, information has been presented to determine the take-off weight, field requirements and take-off flight path assuming an engine failure occurs during the take-off procedure. The following illustrates the use of these charts.

Enter the Accelerate-Go graph at 25°C, 3966 feet pressure altitude, 4975 pounds, and 9.5 knots headwind component:

Section V

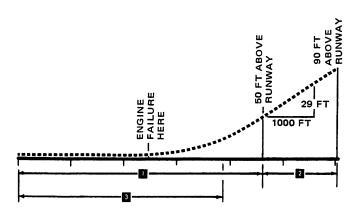
Ground Roll	1500 feet
Total Distance Over 50 ft Obstacle	4550 feet
Lift-off Speed	
50 Foot Speed	

Enter the graph for Take-off Climb Gradient - One Engine Inoperative at 25°C, 3966 feet pressure altitude, and 4975 pounds.

Climb Gradient						2.9%
Climb Speed					96	knots

A 2.9% climb gradient is 29 feet of vertical height per 1000 feet of horizontal distance.

NOTE


The Take-Off Climb Gradient - One Engine Inoperative graph assumes zero wind conditions. Climbing into a headwind will result in higher angles of climb, and hence, better obstacle clearance capabilities.

Calculation of horizontal distance to clear an obstacle 90 feet above the runway surface:

Horizontal distance used to climb from 50 feet to 90 feet = $(90 - 50)(1000 \div 29) = 1379$ feet

Total Distance = 4550 + 1379 = 5929 feet

The above results are illustrated below:

- Accelerate go take-off distance = 4550 feet
- Distance to climb from 50 ft to 90 ft above runway = 1379 feet
- Accelerate-stop distance for 6100 lbs take-off weight = 3670 feet

The following calculations provide information for the flight planning procedure. All examples are presented on the performance graphs. A take-off weight of 6100 pounds has been assumed.

Enter the Time, Fuel, and Distance to Climb graph at 25°C to 3966 feet and to 6100 pounds and enter at -10°C to 17,000 feet and to 6100 pounds, and read:

Time to Climb = 25 · 6 = 19 min Fuel Used to Climb = 132 · 34 = 98 pounds Distance Traveled = 63 · 13 = 50 NM

Enter the graph for ISA Conversion at the enroute conditions.

Section V

Pressure Altitude = 17,000 feet OAT = -10° C ISA Condition = ISA + 9° C

The cruise power setting is assumed to be Recommended Cruise Power - 30 in. Hg, 2400 RPM.

Enter the table for Recommended Cruise Power - 30 in. Hg, 2400 RPM at ISA, and ISA + 36° F (ISA + 20° C)

Interpolate to obtain cruise speeds and fuel flow rates at 17,000 feet.

1	RUISE ISPEED ~ KTS	CRUISE FUEL FLOWS ~ GAL/HR/ENG						
ISA	ISA + 20°C	ISA	ISA + 20°C					
218	210	17.5	14.8					

Interpolate between these speeds for ISA + 9°C

Cruise True Airspeed = 214 knots

Interpolate between these fuel flows for ISA + 9°C

Fuel Flow Per Engine = 16.3 gal/hr Total Fuel Flow = 32.6 gal/hr (196 lb/hr)

Enter the graph for Descent at 17,000 feet to the descent line and enter again at 5650 feet to the descent line, and read:

Time to Descend = 16.5 - 6.5 = 10 min Fuel Used to Descend = 44 - 16 = 28 pounds Descent Distance = 59 - 21 = 38 NM

Section V Performance

BEECHCRAFT Baron 58TC

Time and fuel used were calculated at Recommended Cruise Power - 30 in. Hg, 2400 RPM as follows:

Time = Distance ÷ Ground Speed

Fuel Used = (Time) (Total Fuel Flow)

Results are as follows:

ROUTE	MAG COURSE		EST GROUND SPEED KTS		TIME AT CRUISE ALT HRS:MIN	FUEL USED FOR CRUISE LBS
BIL-SHR	114°	16°E	227	*38	:10	33
SHR-CZI	136°	15°E	252	57	:14	44
CZI-DGW	131°	15°E	222	95	:26	84
DGW-CYS	138°	14°E	227	47	:12	41
	169°	14°E	249	46	:11	36
CYS-DEN	166°	14°E	247	*43	:10	34

Fuel used from BIL to SHR is:

98 + 33 = 131 pounds

The estimated weight upon reaching SHR is:

6100 - 131 = 5969 pounds

^{*}Distance required to climb or descend has been subtracted from segment distance.

NOTE

The two engine rate of climb was determined for the cruise altitude and estimated weight at SHR. The MEA at SHR was the highest MEA encountered during the flight. Climb - One Engine Inoperative and Service Ceiling were determined for the MEA and weight at SHR.

DETERMINATION OF FLIGHT TIME, BLOCK SPEED AND FUEL REQUIREMENTS								
ITEM	TIME HRS:MIN	FUEL LBS	DIS NM					
Start, Runup, Taxi and Take-off Acceleration	: 00	32	0					
Climb	: 19	98	50					
Cruise	1 : 23	272	326					
Descent	: 10	28	38					
Total	1 : 52	430	414					

Total Flight Time: 1 hour, 52 minutes

Block Speed: 414 NM ÷ 1 hour, 52 minutes = 222 knots

Reserve Fuel (45 minutes at Economy Cruise Power):

Obtain fuel flow rate from Economy Cruise Power table at 17,000 feet for ISA (assume ISA fuel flow rate).

Fuel Flow Per Engine = 11.3 gal/hr
Total Fuel Flow = 22.6 gal/hr
(135.6 lbs/hr)

Reserve Fuel = (45 min) (135.6 lbs/hr) = 102 lbs (17 gal)

Total Fuel: 430 + 102 = 532 lbs (87 gal aviation gasoline)

Check for Maximum Zero Fuel Weight requirement:

Ramp Weight - Fuel Requirement = 6132 - 532 = 5600 lbs

The maximum zero fuel weight requirement of 5700 lbs has not been exceeded.

If the requirement had not been met, two options would have existed:

- Reduce the Zero Fuel Weight to 5700 pounds, then add the fuel required for the flight.
- 2. Increase the fuel load to at least 72 gal (6132 5700 = 432 lbs).

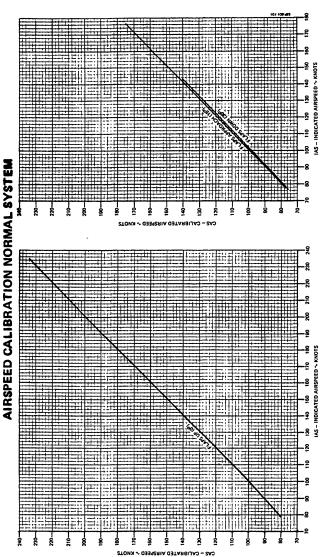
The estimated landing weight is determined by subtracting the fuel required for the flight from the ramp weight.

$$6132 - 430 = 5702$$
 lbs

Enter the graph for Landing Distance — Flaps 30 Degrees at 15°C, 5650 feet pressure altitude, 5702 pounds, and 9.5 knots headwind component.

Ground Roll .					1610 feet
Total Over 50 ft Obs	tacl	е			2690 feet
Approach Speed					99 knots

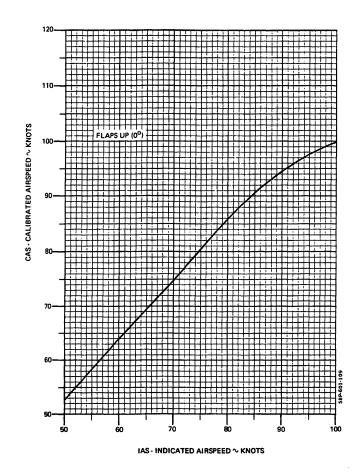
Enter the graph for Climb — Balked Landing at 15°C, 5650 feet pressure altitude, and 5702 pounds.


Rate of Climb	900 ft/min
Climb Gradient	7.2%

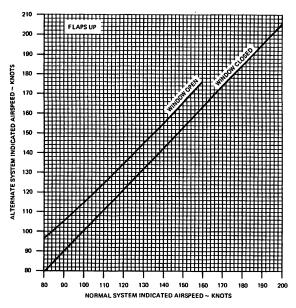
Section V
Performance

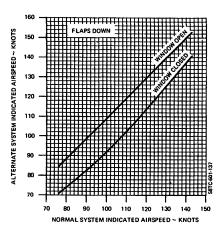
COMMENTS PERTINENT TO THE USE OF PERFORMANCE GRAPHS:

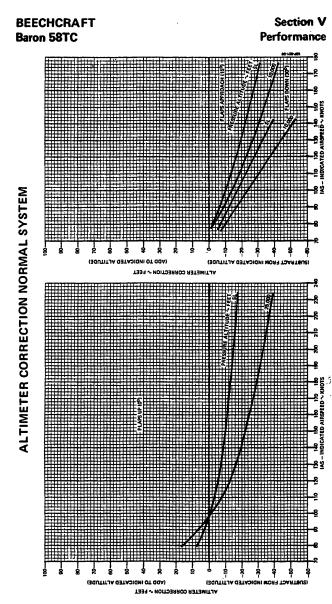
- The example, in addition to presenting an answer for a
 particular set of conditions, also presents the order in
 which the graphs should normally be used, i.e., if the
 first item in the example is OAT, then enter the graph at
 the known OAT.
- The reference lines indicate where to begin following guide lines. Always project to the reference line first, then follow the guide lines to the next known item.
- Indicated airspeeds (IAS) were obtained in flight, by using the Airspeed Calibration Normal System, and the Airspeed Calibration Normal System Take-off Ground Roll, for all lift off speeds.
- 4. The associated conditions define the specific conditions from which performance parameters have been determined. They are not inteded to be used as instructions; however, performance values determined from charts can only be achieved if specified conditions exist.
- The full amount of usable fuel is available for all approved flight conditions.

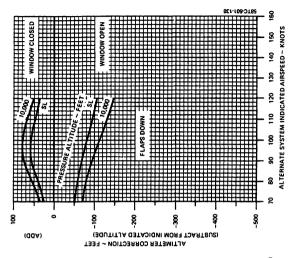


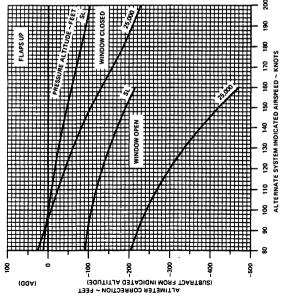
Section V Performance


AIRSPEED CALIBRATION NORMAL SYSTEM

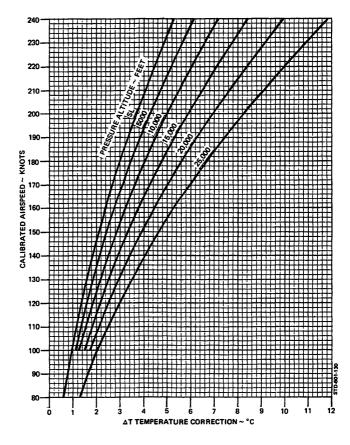

TAKE-OFF GROUND ROLL

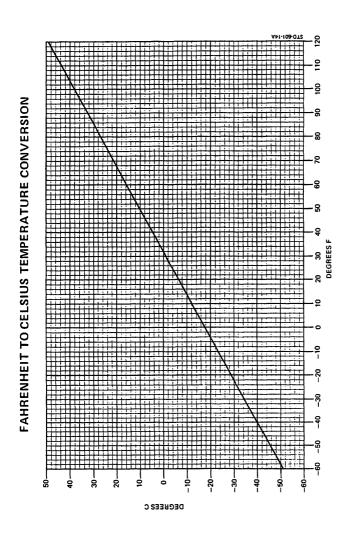


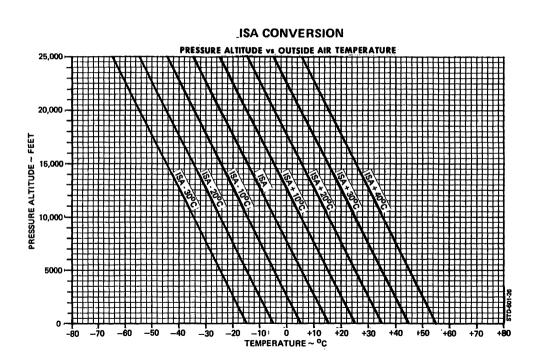




Baron 58TC

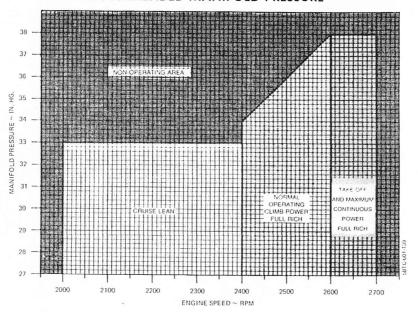



ALTIMETER CORRECTION ALTERNATE SYSTEM


INDICATED OUTSIDE AIR TEMPERATURE CORRECTION

STANDARD DAY (ISA)

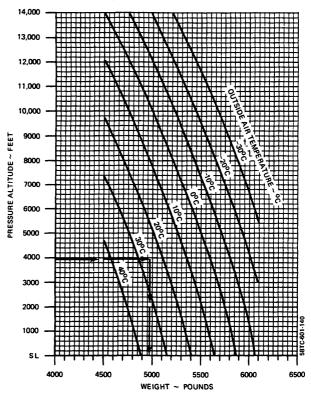
NOTE: SUBTRACT AT FROM INDICATED (GAGE) OAT TO OBTAIN TRUE OAT (AT ASSUMES A RECOVERY FACTOR OF 0.7)



BEECHCRAF

Section

RECOMMENDED MANIFOLD PRESSURE

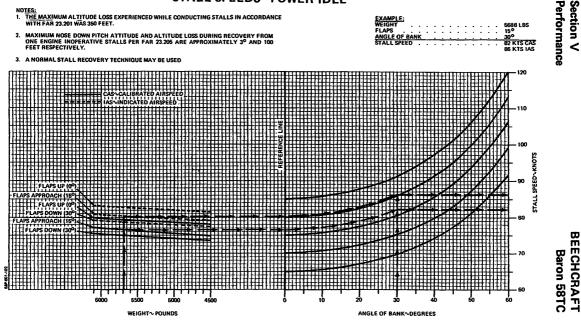

BEECHCRAFT Baron 58TC

Performance

TAKE-OFF WEIGHT

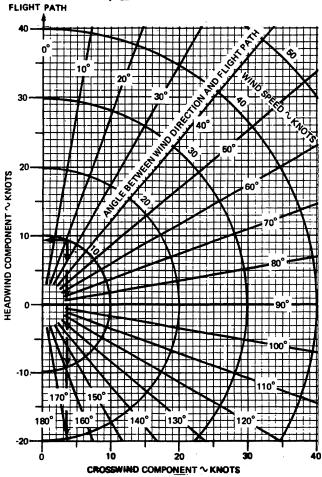
TO ACHIEVE POSITIVE SINGLE ENGINE RATE OF CLIMB AT LIFT-OFF

ASSOCIATED CONDITIONS:	EXAMPLE:
AIRPLANE AIRBORNE POWER TAKE-OFF AT 2700 RPM	PRESSURE ALTITUDE 3966 FT OAT 25°C
FLAPS UP (0°) LANDING GEAR DOWN INOPERATIVE	TAKE-OFF WEIGHT 4975 LBS
PROPELLER FEATHERED	



STALL SPEEDS - POWER IDLE

- 1. THE MAXIMUM ALTITUDE LOSS EXPERIENCED WHILE CONDUCTING STALLS IN ACCORDANCE WITH FAR 23 201 WAS 350 FEET.
- 2. MAXIMUM NOSE DOWN PITCH ATTITUDE AND ALTITUDE LOSS DURING RECOVERY FROM ONE ENGINE INOPERATIVE STALLS PER FAR 23,205 ARE APPROXIMATELY 30 AND 100 FEET RESPECTIVELY.
- 3. A NORMAL STALL RECOVERY TECHNIQUE MAY BE USED


Section V

Section V Performance

WIND COMPONENTS Demonstrated Crosswind is 30 kts

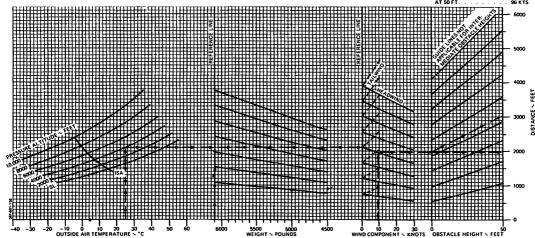
EXAMPLE:	
WIND SPEED	10 KNOTS
ANGLE BETWEEN WIND DIRECTION AND FLIGHT PATH	20°
HEADWIND COMPONENT	9.5 KNOTS
CROSSWIND COMPONENT	3.5 KNOTS

January, 1976

September, 1977

ASSOCIATED CONDITIONS:

WER TAKE OFF AT 2700 RPM SET BEFORE BRAKE RELEASE


FLAPS. UP (0")
LANDING GEAR RETRACT AFTER LIST OFF
RUNWAY. PAVED, LEVEL, DRY 3URFACE
COWL FLAPS. OPEN

TAKE-OFF DISTANCE

WEIGHT ~ LBS	TAKE-OFF SP	EED ∿ K
MEIGHT C FR2	LIFTOFF	50 FT
6100	81	96
6000	81	96
5500	81 1	95
5000	81	94
4500	ăi l	94

EXAMPLE:

CAAMILE.										
OAT.										25°C
PRESSURE ALTITUDE .						٠	٠	٠	٠	3900 F I
TAKE OFF WEIGHT					٠					6100 LBS
HEADWIND COMPONENT										9.5 KTS
GROUND ROLL										1970 FT
50 FT OBSTACLE										3020 FT
TAKE OFF SPEEDS: AT L	IF T	.0	FF	i,	÷			i		81 KTS

Baron 58TC BEECHCRA

Performance Section

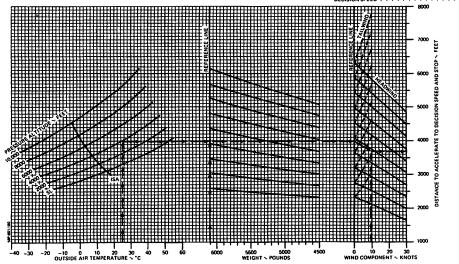
WIND COMPONENT∿ KNOTS OBSTACLE HEIGHT ∿ FEET

ASSOCIATED CONDITIONS:

ACCELERATE - STOP DECISION SPEED-81 KNOTS (ALL WEIGHTS)

TAKE OFF POWER AT 2700 RPM SET BEFORE BRAKE RELEASE
 ENGINE IDLE AT DECISION SPEED

RUNWAY. . . . PAVED, LEVEL, DRY SURFACE COWL FLAPS . . . OPEN


EXAMPLE:

OAT.
PRESSURE ALTITUDE
TAKE-OFF WEIGHT 6100 LBS HEADWIND COMPONENT. 9.5 KTS ACCELERATE AND STOP DISTANCE . 3670 FT

Performance Section

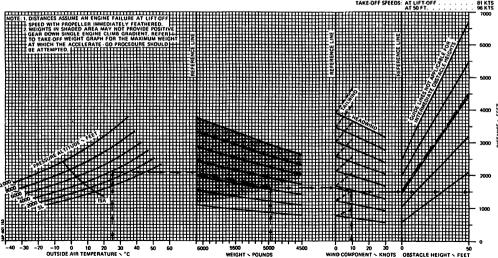
BE

Baron 58T

ASSOCIATED CONDITIONS:

TAKE-OFF AT 2700 RPM SET BEFORE BRAKE RELEASE

UP (0")
RETRACT AFTER LIFT OFF
PAVED, LEVEL, DRY SURFACE


BEECHCRA
Baron 58TC

TAKE-OFF SPEEDS
LIFT-OFF 81 KTS
50 FT 96 KTS

OAT 25'C
PRESSURE ALTITUDE 25'C
TAKE OFF WEIGHT 495 LBS
READWIND COMMORENT 55'KTS
GROUND ROLL.
TOTAL DISTANCE OVER 50 FT OBSTACLE 4550 FT
TAKE OFF SPEEDS: ALTITOFF 51 KTS
ALTITOFF 7000

EXAMPLE:

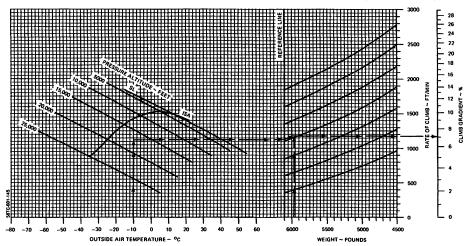
CLIMB-TWO ENGINES

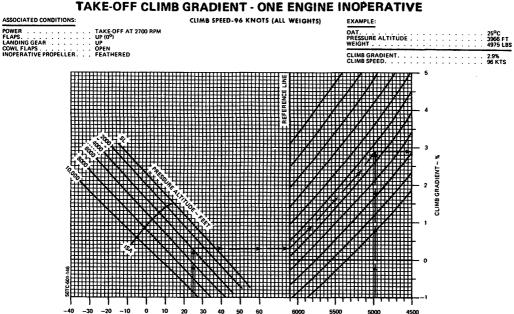
CLIMB SPEED-115 KNOTS (ALL WEIGHTS)

ASSOCIATED CONDITIONS:

MAXIMUM CONTINUOUS AT 2600 RPM

COWL FLAPS . . . OPEN


EXAMPLE:


				·	i	i		5969 LBS
:	• •	•	٠	:	•	٠	:	-10°C 17.000 FT
	:	: : :	<u>: : : :</u>	: : : : :	<u>::::::</u>	<u> </u>	<u>: : : : : : : : : : : : : : : : : : : </u>	

Performance

BEECHCRAFT Baron 58TC

WEIGHT ~ POUNDS

OUTSIDE AIR TEMPERATURE ~ °C

TIME, FUEL, AND DISTANCE TO CLIMB

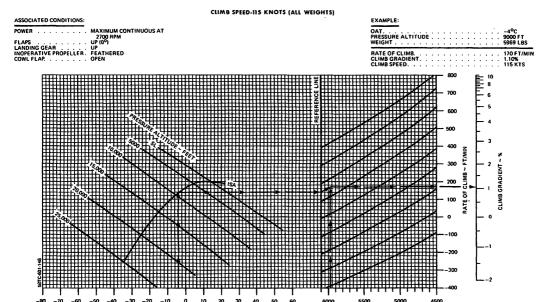
CHAR SPEED, 130 KNOTS (ALL WRIGHTS)

EXAMPLE: OAT AT TAKE OFF OAT AT CRUISE AIRPORT PRESSURE ALTITUDE CRUISE PRESSURE ALTITUDE INITIAL CLIMB WEIGHT

Section

BEECHCRAFT

Baron 58TC


erformance

CLIMB - ONE ENGINE INOPERATIVE

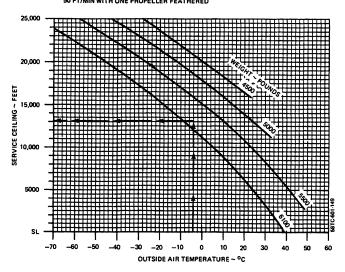
OUTSIDE AIR TEMPERATURE ~ °C

WEIGHT ~ POUNDS

SERVICE CEILING-ONE ENGINE INOPERATIVE

CLIMB SPEED-115 KNOTS (ALL WEIGHTS)

SSOCI	ATED	CONDIT	TIONS:

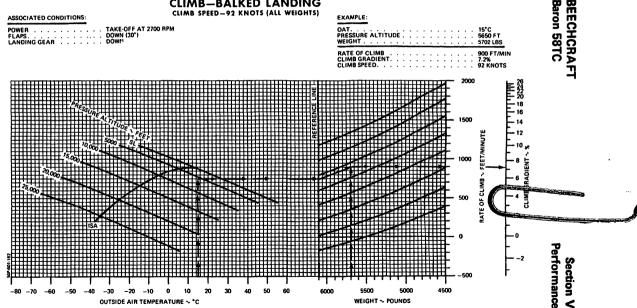

POWER									MAXIMUM CONTINUOUS AT 2700 RPM
FLAPS		:.							UP (O°)
LANDIN INOPER			o i	ė	. ;		٠	٠	UP

EXAMPLE:

NOOTE SEGMEN	-	141	-	_	÷	÷	÷	<u>.</u>		9000 F1	
WEIGHT	÷	٠.	ė,	٠	•	٠	٠	٠	٠	5969 LBS	5
OAT AT MEA .										-4°C	

13,050 FT

NOTE: SERVICE CEILING IS ALTITUDE WHERE AIRPLANE HAS CAPABILITY OF CLIMBING 50 FT/MIN WITH ONE PROPELLER FEATHERED


CLIMB-BALKED LANDING CLIMB SPEED-92 KNOTS (ALL WEIGHTS)

ASSOCIATED CONDITIONS:

TAKE-OFF AT 2700 RPM DOWN (30°) DOW!

EXAMPLE:

Baron 58TC

MAXIMUM CRUISE POWER MANIFOLD PRESSURE: 33 IN HG - PROPELLER SPEED: 2400 RPM

	MAXIMUM CRUISE POWER MANIFOLD PRESSURE: 33 IN HG - PROPELLER SPEED: 2400 RPM ISA - 36°F (-20°C) STANDARD DAY (ISA) ISA + 36°F (+20°C)													Perforn		
		IS	A - 36°F (-2	o°c)	l		STANDARD DAY (ISA)						4 + 36°F (+2	20°C)		펄
PRESS ALT.	10	ΑT	FUEL FLOW PER ENG	CAS	TAS	10.	ΑT	FUEL FLOW PER ENG	CAS	TAS	10/		FUEL FLOW PER ENG	CAS	JAS	mance
FEET	°F	°c	GAL/HR	KTS	ктѕ	°F	°c	GAL/HR	KTS	KTS	°F	°c	GAZIHR	KTS	KTS	
SL	28 23	-2 -5	20.9 21.3	195 197	188 195	64 57	18 14	18.3 18.7	184 185	184 191	100 93	38 34	5.5 9	172 173	177 184	The case
2000 4000	16	.g	21.6	196	201	52	11	19.0	185	196	86	30	16.2	173	190	
6000	9	-13	21.8	196	206	45	7	19.2	185	201	81	27	16.4	173	195	l
8000	1	-17	22.1	195	211	37	3	19.4	184	207	73	23	16.6 16.8	172	200	1
10,000	-6	-21	22.3	194	216	30	-1	19.7	182	212	66	19 15	16.8	169	209	
12,000	-11	-24	22.3	192	220	25	-4	19.7	181 179	216 220	59 52	11	16.8	166	213	į .
14,000	-18	-28	22.3	190	225	18 10	-8 -12	19.7 19.6	176	224	46	8	16.7	164	217	
16,000	-26	-32	22.2	188 185	229	3	-16	19.5	174	228	39	4	16.6	162	221	l
18,000	-33	-36	22.1 21.8	182	237	4	-20	19.2	171	232	32	Ò	16.3	158	224	1
20,000	-38	-39 -43	21.5	179	241	-11	-24	18.9	168	235	25	4	16.1	155	227	1
22,000 24,000	-45 -53	-43 -47	21.3	177	245	17	-27	18.7	165	239	18	-8	15.9	152	230	1
25,000	-56	49	21.2	175	247	-20	-29	18.54	164	241	14	-10	15.8	151	232	J 🕳

NOTES:

- Fuel flows are to be used for flight planning only and will vary from engine to engine; lean using TIT.
 Extend cowl flaps as required to maintain cylinder head temperatures at 420 F or less.
- 3. Cowl flaps full open reduce true airspeed by approximately 9 knots.
- 4. Cruise speeds are presented at an average weight of 5800 lbs.

BEECHCRAFT
Baron 58TC

Section V

RECOMMENDED CRUISE POWER MANIFOLD PRESSURE: 30 IN HG- PROPELLER SPEED: 2400 RPM

		IS	A - 36°F (-2	(0°C)			STA	NDARD DA	Y (ISA	ISA + 36°F (+20°C)					
PRESS ALT.	10	ΑT	FUEL FLOW PER ENG	CAS	TAS	10	AT	FUEL FLOW PER ENG	CAS	TAS	10.	AT	FUEL FLOW PER ENG	CAS	TAS
FEET	°F	°c	GAL/HR	KTS	KTS	°F	°c	GAL/HR	ктѕ	ктѕ	°F	°c	GAL/HR	KTS	ктѕ
SL 2000 4000 8000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 25,000	28 21 14 9 1 -6 -13 -18 -26 -33 -40 -45 -53	-2 -6 -10 -13 -17 -25 -28 -36 -40 -43 -47 -49	18.7 19.1 19.4 19.6 19.8 19.9 20.1 20.1 20.1 20.0 19.8 19.6 19.3	187 189 189 188 187 186 185 183 181 179 176 173 170 168	180 187 193 198 203 207 212 216 221 225 229 232 236 238	64 57 50 45 37 30 23 16 10 3 -4 -11 -18	18 14 10 7 3 -1 -5 -9 -12 -16 -20 -24 -28 -30	16.2 16.6 16.8 17.0 17.2 17.3 17.5 17.5 17.5 17.4 17.2 17.0 16.7	176 177 178 177 176 175 174 172 170 167 164 162 158	176 183 188 193 198 203 208 212 216 220 223 227 230 231	100 93 86 79 73 66 59 52 45 39 32 25 18	38 34 30 26 23 19 15 11 7 4 0 4 -8 -10	13.7 14.0 14.3 14.5 14.6 14.7 14.9 14.8 14.8 14.6 14.5 14.2	164 165 165 165 164 163 162 160 157 155 152 149 145	170 176 181 186 191 196 201 204 208 211 215 218 220

- Fuel flows are to be used for flight planning only and will vary from engine to engine; lean using TIT.
 Extend cowl flaps as required to maintain cylinder head temperatures at 420°F or less.
- 3. Cowl flaps full open reduce true airspeed by approximately 9 knots.
- 4. Cruise speeds are presented at an average weight of 5800 lbs.

Performance

RECOMMENDED CRUISE POWER MANIFOLD PRESSURE: 30 IN HG- PROPELLER SPEED: 2200 RPM

	MAINTOUD FILESCOPE. SO HE HIGH FINOT ELLER OF ELLER HIM														
! [IS	A · 36°F (·2	(°C)			STAI	NDARD DA	Y (ISA	.)	ISA + 36°F (+20°C)				
PRESS ALT.	10	ΑT	FUEL FLOW PER ENG	CAS	TAS	10	ΑT	FUEL FLOW PER ENG	CAS	TAS	10	ΑT	FUEL FLOW PER ENG	CAS	TAS
FEET	°F	°c	GAL/HR	KTS	ктѕ	°F	°c	GAL/HR	KTS	KTS	°F	°c	GAL/HR	KTS	ктѕ
SL	28	-2	15.6	178	171	64	18	13.5	167	167	99	37	12.0	154	159
2000	21	-6	15.9	178	177	57	14	13.7	167	172	93	34	12.1	155	165
4000	14	-10	16.1	178	182	50	10	13.9	167	177	86	30	12.2	155	170
6000	7	-14	16.3	178	187	43	6	14.1	166	182	79	26	12.3	154	175
8000		-17	16.5	176	191	36	2	14.3	165	186	72	22	12.4	153	179
10,000	-6	-21	16.6	175	195	30	-1	14.3	164	190	64	18	12.4	152	183
12,000	-13	-25	16.7	173	199	23	-5	14.4	162	194	57	14	12.5	150	186
14,000	-20	-29	16.8	172	204	16	-9	14.5	161	199	52	11	12.5	148	190
16,000	-27	-33	16.9	170	208	9	-13	14.6	159	203	45	7	12.6	146	194
18,000	-35	-37	16.9	168	212	1	-17	14.6	157	206	37	3	12.6	144	197
20,000	-40	-40	16.9	166	216	-6	-21	14.6	154	210	30	-1	12.6	141	200
22,000	-47	-44	16.8	163	220	-11	-24	14.5	152	213	23	-5	12.5	138	202
24,000	-54	-48	16.7	161	224	-18	-28	14.4	149	216	16	-9	12.5	135	205
25,000	-58	-50	16.6	160	226	-22	-30	14.3	147	218	12	-11	12.4	133	206

- Fuel flows are to be used for flight planning only and will vary from engine to engine; lean using TIT.
 Extend cowl flaps as required to maintain cylinder head temperatures at 420° F or less.
- 3. Cowl flaps full open reduce true airspeed by approximately 9 knots.
- 4. Cruise speeds are presented at an average weight of 5800 lbs.

RECOMMENDED CRUISE POWER MANIFOLD PRESSURE: 26 IN HG- PROPELLER SPEED: 2200 RPM

		IS	A - 36°F (-2	0°C)			STAI	NDARD DA	DAY (ISA)			ISA + 36°F (+20°C)				
PRESS ALT.	10	AT	FUEL FLOW PER ENG	CAS	TAS	10	AT	FUEL FLOW PER ENG	CAS	TAS	10.	ΑT	FUEL FLOW PER ENG	CAS	TAS	
FEET	°F	°c	GAL/HR	KTS	ктѕ	°F	°c_	GAL/HR	ктѕ	ктѕ	°F	°c	GAL/HR	KTS	KTS	
SL 2000 4000 6000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 25,000	27 19 14 7 0 8 -15 -20 -27 -35 -42 -49 -54	·3 ·7 ·10 ·14 ·18 ·22 ·26 ·29 ·33 ·37 ·41 ·45 ·48 ·50	12.6 12.7 12.9 13.1 13.2 13.4 13.6 13.7 13.8 13.9 14.0 14.0	161 162 163 163 162 161 160 158 157 155 155 151 148 147	156 161 166 171 175 179 184 188 192 195 199 203 206 208	63 555 50 43 36 28 21 14 9 1 -6 -13 -20	17 13 10 6 2 -2 -6 -10 -13 -17 -21 -25 -29	11.4 11.5 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.3 12.4 12.4	152 153 153 153 152 151 150 149 147 145 142 140 138 137	152 157 162 167 171 175 179 183 187 191 194 198 201 202	99 91 84 77 72 64 57 50 43 36 28 23 16	37 33 29 25 22 18 14 10 6 2 -2 -5 -9 -11	10.2 10.3 10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.1 11.1	140 140 140 140 139 138 137 135 133 130 128 125 122	144 150 154 158 162 166 170 173 176 179 181 184 185	

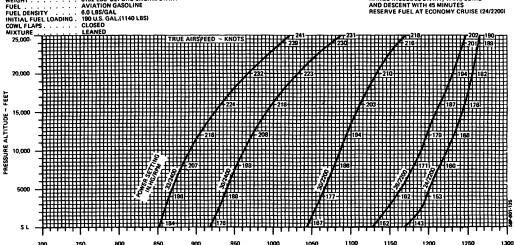
- 1. Fuel flows are to be used for flight planning only and will vary from engine to engine: lean using TIT.
- 2. Extend cowl flaps as required to maintain cylinder head temperatures at 420°F or less.
- 3. Cowl flaps full open reduce true airspeed by approximatley 9 knots.
- 4. Cruise speeds are presented at an average weight of 5800 lbs.

ECONOMY CRUISE POWER MANIFOLD PRESSURE: 24 IN HG - PROPELLER SPEED: 2200 RPM

		ISA - 36°F (-20°C)					STANDARD DAY (ISA)					ISA + 36°F (+20°C)				
PRESS ALT.	1	ΑT	FUEL FLOW PER ENG	CAS	TAS	1	ΑT	FUEL FLOW PER ENG	CAS	TAS	10	ΑT	FUEL FLOW PER ENG	CAS	TAS	
FEET	°F	°c	GAL/HR	ктѕ	KTS	°F	°c	GAL/HR	KTS	KTS	°F	°c	GAL/HR	ктѕ	ктѕ	
SL 2000 4000 6000 10,000 12,000 14,000 18,000 20,000 22,000 24,000 25,000	27 19 12 7 0 -8 -15 -22 -30 -35 -42 -49 -56 -60	-3 -7 -11 -14 -18 -22 -26 -30 -34 -37 -41 -45 -49 -51	11.4 11.5 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.5 12.6 12.6	154 155 155 155 154 154 152 151 150 149 147 145 143 142	149 154 158 163 167 172 175 179 184 188 192 196 200 202	63 55 48 41 36 28 21 14 7 0 -8 -13 -20 -24	17 13 9 5 2 -2 -6 -10 -14 -18 -22 -25 -29 -31	10.3 10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3 11.3 11.4 11.4	143 144 144 143 142 142 140 139 138 136 134 132 130 128	143 148 153 156 160 164 168 172 176 179 182 186 189 190	99 91 84 77 70 63 57 50 43 36 28 21 14	37 33 29 25 21 17 14 10 6 2 -2 6 -10	9.2 9.3 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.1 10.2 10.2	127 130 130 130 129 127 126 124 122 120 117 114 109 106	132 138 143 147 150 153 156 160 162 164 166 167 166	

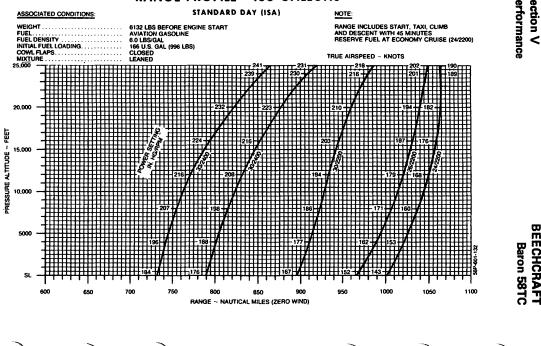
- Fuel flows are to be used for flight planning only and will vary from engine to engine; lean using TIT.
 Extend cowl flaps as required to maintain cylinder head temperatures at 420°F or less.
- 3. Cowl flaps full open reduce true airspeed by approximately 9 knots.
- 4. Cruise speeds are presented at an average weight of 5800 lbs.

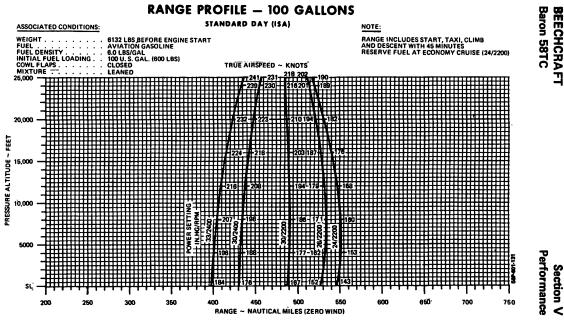
Performance


NOTE:

RANGE INCLUDES START, TAXI, CLIMB

6132 LBS BEFORE ENGINE START **AVIATION GASOLINE** 6.0 LBS/GAL FUEL DENSITY 6.0 LBS/GAL INITIAL FUEL LOADING . 190 U.S. GAL.(1140 LBS) COWL FLAPS . CLOSED


ASSOCIATED CONDITIONS:

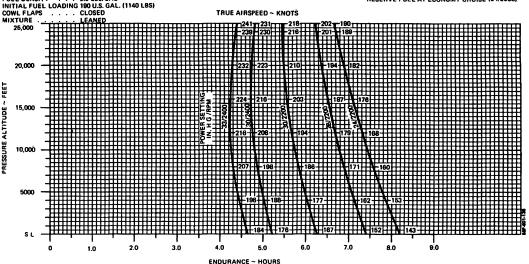

LEANED

RANGE ~ NAUTICAL MILES (ZERO WIND)

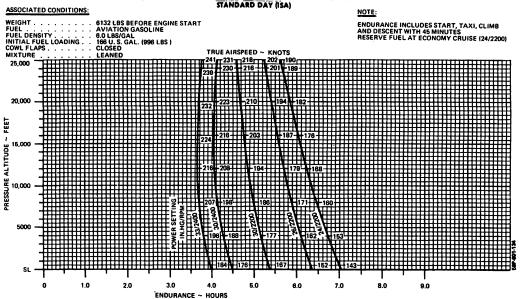
RANGE PROFILE - 166 GALLONS

ENDURANCE PROFILE—190 GALLONS NOTE:

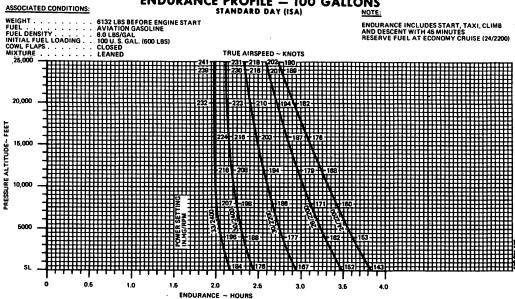
ASSOCIATED CONDITIONS:


FUEL AVIATION GASOLINE

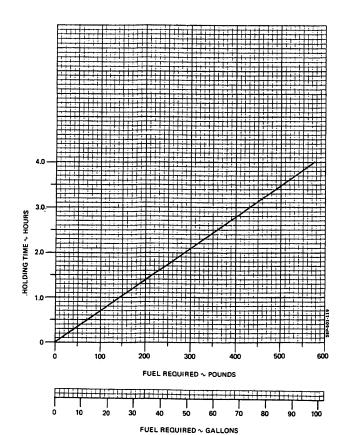
FUEL DENSITY . . . 8.0 LBS/GAL


ENDURANCE INCLUDES START, TAXI, CLIMB. AND DESCENT WITH 45 MINUTES RESERVE FUEL AT ECONOMY CRUISE (24/2200)

m


ECHCRAF Baron 58TC

ENDURANCE PROFILE — 166 GALLONS STANDARD DAY (15A)


ENDURANCE PROFILE — 100 GALLONS

HOLDING TIME

• • • • • • • • • •

ASSOCIATED CONDITIONS:

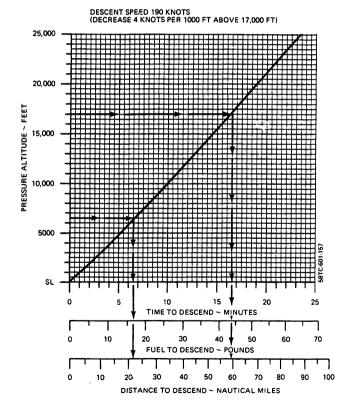
BEECHCRAFT Baron 58TC

DESCENT

ASSOCIATED CONDITIONS:

POWER 30 IN. HG AND 2200 RPM ABOVE 10,000 FT AS REQUIRED

FOR LESS THAN 1000 FT/MIN BELOW 10,000 FT UP (0°)


FLAPS

LANDING GEAR.

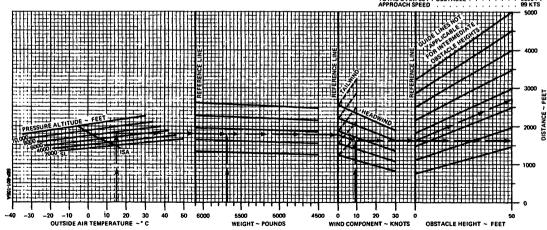
EXAMPLE:

INITIAL ALTITUDE . 17,000 FT FINAL ALTITUDE . 5650 FT

TIME TO DESCEND (16.5-6.5) ≈ 10 MIN FUEL TO DESCEND DISTANCE TO (44-16) = 28 LBS DESCEND (59-21) = 38 NM

)))

LANDING DISTANCE - FLAPS 30°

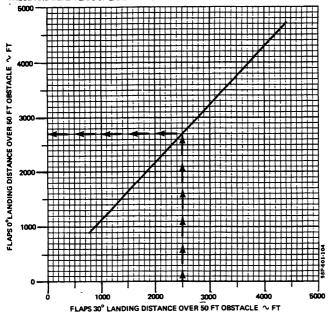

WEIGHT ~ LBS	APPROACH SPEED ~ KTS
6100	100
6000	100
5500	99
5000	99
4500	98

EXAMPLE:

GROUND ROLL.						1610 FT
HEADWIND COMPONENT						
LANDING WEIGHT						5702 LBS
PRESSURE ALTITUDE .						
OAT						15°C

BEECHCRAFT
Baron 58TC

Section V Performance



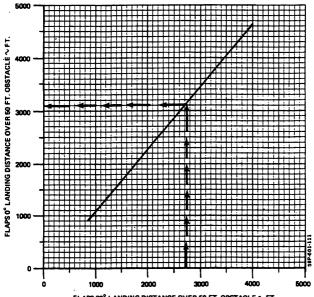
LANDING DISTANCE - FLAPS 0°

Ì	WEIGHT ∼ POUNDS	APPROACH SPEED ∼ KNOTS
١	6100	104
ı	6000	104
1	5500	103
ł	5000	103
Į	4500	102

ASSOCIATED CONDITIONS:	EXAMPLE:
POWER RETARD TO MAINTAIN	FLAPS 30° LANDING
800 FT/MIN ON	DISTANCE OVER
FINAL APPROACH	50 FT OBSTACLE 2500 FEET
FLAPS UP (0°)	LANDING WEIGHT 5702 LBS
RUNWAY PAVED, LEVEL,	FLAPS 0° LANDING
DRY SURFACE	DISTANCE OVER
APPROACH SPEED IAS AS TABULATED	50 FT OBSTACLE
BRAKING MAYIMUM	APPROACH SPEED 103 KNOTS

NOTE: TO DETERMINE FLAPS UP LANDING DISTANCE, READ FROM THE LANDING DISTANCE - FLAPS 30 DEGREES GRAPH, THE LANDING DISTANCE APPROPRIATE TO OAT, ALTITUDE, WEIGHT, WIND AND 50 FT OBSTACLE. ENTER THIS GRAPH WITH DERIVED VALUE AND READ FLAPS UP LANDING DISTANCE.

LANDING DISTANCE - FLAPS 30° GRASS SURFACE


	LANDING DI	STANCE - FLAPS 3	U GHASS SURFACE		
December,	ASSOCIATED CONDITIONS: FORE TO MAINTAIN 1000 FT/MIN ON FINAL APPROACH FLAPS DOWN 1501', GRASS ARAGOCH SPEED MAINT 1011', GRASS ARAGOCH SPEED MAXIMUM MAXIMUM	6000 E		EVAMPLE: 18°C OAT PRESSURE ALTITUDE 5660 FEET LANDING WEIGHT 5702 LBS HEADWING COMPONENT 10 K NOTS GROWN OVER BO FT OBSTACLE 500 FEET TO OVER BO FT OBSTACLE 100 KNOTS APPROACH SPEED 100 KNOTS	-
1976		<u></u>		-500	Section Performan
7	-40 -30 -20 -10 0 10 20 30 40 OUTSIDE AIR TEMPERATURE	60 60 6000 5600 WEIGHT	5000 4500 0 10 20 POUNDS WIND COMPONENT ~	KNOTS OBSTACLE HEIGHT ~ FEET 60	୫ <

LANDING DISTANCE - FLAPS 0° GRASS SURFACE

WEIGHT ∼ POUNDS	APPROACH SPEED ∼ KNOTS
6100	104
8000	104
5500	103
5000	103
4500	102

ASSOCIATED CONDITIONS:	FLAPS 30° LANDING
POWER RETARD TO MAINTAIN	DISTANCE OVER
800 FT/MIN ON FINAL	50 FT. OBSTACLE 2730 FEET
APPROACH	LANDING WEIGHT 5702 LBS
FLAPS UP (0°)	FLAPS O' LANDING
RUNWAY SHORT, DRY GRASS	.DISTANCE OVER
APPROACH SPEED . IAS AS TABULATED	50 FT OBSTACLE 3110 FEET
	ADDROACH SDEED 104 MAOTS

NOTE: TO DETERMINE FLAPS UP LANDING DISTANCE READ FROM THE LANDING DISTANCE - FLAPS 30° GRAPH, THE LANDING DISTANCE APPROPRIATE TO OAT, ALTITUDE, WEIGHT, WIND, AND 50 FT OBSTACLE. ENTER THIS GRAPH WITH DERIVED VALUE AND READ FLAPS UP LANDING DISTANCE.

FLAPS 30° LANDING DISTANCE OVER 50 FT. OBSTACLE \sim FT.